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Abstract 

Many oil exporters accumulate large sovereign wealth funds, though their portfolio allocation does not 

take into account below-ground assets, like oil. Similarly, the above-ground portfolio does not affect the 

decision to extract oil. This paper shows that subsoil oil wealth should change a country’s above-ground 

asset allocation in two ways. First, the holding of all risky assets is leveraged because there is additional 

wealth outside the fund. Second, more (less) is invested in financial assets that are negatively (positively) 

correlated with oil to hedge against the riskiness of subsoil exposure. Furthermore, if marginal oil rents 

move pro-cyclically with the value of the financial assets in the fund, then oil will be extracted faster than 

predicted by the standard Hotelling rule. This generates a risk premium for being exposed to volatile oil 

prices. Finally, any unhedged residual volatility must be managed through additional precautionary 

saving. 
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1. Introduction 

Many countries blessed with natural resources - such as oil, natural gas, copper or diamonds (“oil” for 

short) - accumulate sovereign wealth funds with the proceeds from selling below-ground assets. These 

funds can comprise a large part of commodity exporters’ wealth. Azerbaijan’s US$ 33 billion fund 

accounts for almost half of GDP, Qatar’s US$ 115 billion fund accounts for almost two thirds of GDP, 

Saudi Arabia’s fund is approximately four-fifths of GDP, Norway’s fund is nearly one and a half times 

GDP, and the tiny island of Kiribati’s fund is double its GDP (SWF Institute, 2013; IMF, 2013). 

Collectively commodity sovereign wealth funds hold over US$ 3 trillion in financial assets (SWF 

Institute, 2013). 

Commodity sovereign wealth funds are used to smooth consumption of below-ground wealth across 

generations, because this wealth is temporary. They are also used to insulate government budgets from 

volatile commodity prices, allowing the budgetary process to be conducted with more certainty. While the 

funds are professionally managed and use modern portfolio theory when allocating their financial assets, 

it is less clear whether their investment strategy takes proper account of commodity price volatility, and 

the stock of subsoil reserves. It is also not clear how oil- and asset-price volatility should affect the 

optimal depletion of oil reserves. These are both important questions for commodity exporters, because 

commodity prices are notoriously volatile and below-ground assets can be worth more than the financial 

assets held in the fund. 

Our objective is therefore to answer the following four questions regarding how below-ground assets 

should influence above-ground portfolios, and vice-versa. First, how should assets above the ground be 

allocated given the large and volatile stock of assets below the ground? Second, how should asset 

allocation and oil extraction affect the rate at which financial and oil wealth is consumed? Third, how 

does this change if financial markets are incomplete, so that oil shocks cannot be completely hedged in 

the portfolio? Finally, how does the above-ground allocation of financial assets affect how quickly below-

ground assets are optimally extracted? 

We will show that the fund should be designed to offset the exposure to subsoil oil, use precautionary 

savings to manage any residual volatility, and extract oil more quickly if marginal oil rents are positively 

correlated with the market. 

We show that offsetting subsoil oil involves treating it as part of total wealth, which leads to additional 

demand for risky assets in the sovereign wealth fund in two ways: for leverage and for hedging. The 

leverage demand involves leveraging up all the holdings of risky assets by borrowing the safe asset, or 

going “short”, compared to the case without oil. The leverage factor is the ratio of oil wealth to financial 
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wealth, so these additional holdings of risky financial assets are reversed as the fund matures and oil 

reserves are depleted. The hedging demand involves holding more (less) of financial assets that are 

negatively (positively) correlated with oil price shocks, after adjusting for the correlations between these 

assets. Oil price volatility can be fully offset by changing the weights of financial assets if markets are 

complete, that is if the oil price is driven by the same underlying shocks as (is “spanned” by) the market.  

Precautionary savings should be used to manage any residual volatility in the overall portfolio. The fund 

allows consumption to be smoothed in two ways: in expectation and in variance. In expectation, 

consumption will be a constant share of total wealth independent of when oil is extracted. This is 

reminiscent of the permanent income hypothesis and of Hartwick’s (1977) rule for replacing below-

ground with above-ground assets. In variance, consumption will be insulated from oil price shocks as the 

fund will offset them as much as possible against other assets. The policy maker will thus only be 

exposed to residual volatility, which then must be managed by precautionary saving. If the oil price is not 

fully spanned by financial assets then there will be more residual oil price volatility, and more 

precautionary savings. 

Finally, we show that, if marginal oil rents are positively correlated with the market, oil will be extracted 

more quickly. This generates an additional “risk premium” on the rate of return earned on subsoil oil, 

which provides compensation for its exposure oil price risk. The risk premium is generated by savings on 

extraction costs (which are increasing and convex in the amount extracted at any point in time). By 

extracting more oil initially and then letting the rate of extraction fall, the cost of extraction falls even 

faster which increases oil rents. The amount of risk premium needed depends on how oil is correlated 

with the rest of the portfolio. If it is completely uncorrelated then all oil price shocks can be diversified 

away, and no risk premium is required on subsoil assets. The greater the correlation of oil with the fund, 

the higher risk premium required. 

Our analysis combines three existing strands of literature: on portfolio theory, precautionary savings and 

natural resource extraction. First, we employ portfolio theory to decide how to invest in risky assets. This 

builds on mean-variance theory to construct a diversified portfolio based on the co-movement between 

financial assets (Markowitz, 1952; 1959). The total amount to be invested in risky assets should be 

separated from the share invested in each asset (Tobin, 1958). As all investors have equal information and 

markets are complete, they will hold the market portfolio as used in the capital asset pricing model 

(Sharpe, 1964). We will use the continuous-time formulation which solves the optimal portfolio 
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allocation and consumption-saving decisions simultaneously (Merton, 1990) and extend it to allow for 

subsoil oil wealth. 1 

Second, we use the theory of the precautionary demand for saving. This shows that volatile income 

should be managed by curbing consumption in the short run to build up a buffer stock of savings.2 (e.g., 

Leland, 1968; Sandmo, 1970; Zeldes, 1986; Kimball, 1990; Carroll and Kimball, 2008). In our context 

precautionary saving is used to manage any residual volatility that cannot be managed by diversifying 

financial assets and varying the rate of oil extraction. This extends earlier work on precautionary saving in 

safe assets in a sovereign wealth fund to cope with oil price volatility (Bems and de Carvalho Filho, 2011; 

van den Bremer and van der Ploeg, 2013). 

Third, we extend the theory on the optimal rate of extraction of non-renewable resources (e.g., Hotelling, 

1931; Solow, 1974; Gaudet, 1972). It has been shown that oil extraction should be more rapid if oil prices 

are volatile and the marginal cost of oil extraction is convex, as a form of “extractive prudence” (Pindyck, 

1980, 1981). This assumes that oil wealth is only risky beneath the ground. Others have studied extraction 

with stochastic oil prices, growth and capital accumulation (Gaudet and Khadr, 1991; Atewamba and 

Gaudet, 1992). We now acknowledge that oil wealth is also risky above the ground, as it will be invested 

in risky financial assets. We also find that oil price volatility should make extraction more rapid on 

average, but do so with less onerous assumptions on the nature of extraction costs.3  

Combining these different insights and taking them further, we find that optimal behavior is described by 

three equations. The allocation of financial assets is described by suitably modified CAPM equations; 

consumption and precautionary saving by a stochastic Euler equation; and the optimal rate of oil 

extraction by a modified stochastic Hotelling rule. Although the issue has been identified in the empirical 

literature, full integration of these three strands of literature has not been discussed yet. Our results are 

mostly analytical, but inspired by earlier empirical results. For example, using the correlation of oil prices 

with other financial assets in simulations indicates that Norway’s exposure to aggregate oil price volatility 

can be halved if oil wealth is hedged in the sovereign wealth fund (Gintschel and Scherer, 2008) and that 

the fund should invest less aggressively in risky assets as it ages (Scherer, 2009; Balding and Yao, 2011). 

These studies focus on asset allocation but do not consider the optimal consumption-saving decisions or 

the optimal time path for the rate of oil extraction. 

                                                           
1 This is related to extensions dealing with a non-tradable stream of income in the context of university endowments 

(Merton, 1993; Brown and Tiu, 2012), labor income including endogenous effort (Bodie et al., 1992; Wang et al., 

2013), non-tradable and uninsurable income (Svensson and Werner, 1993; Koo, 1998) and non-financial stores of 

wealth such as housing (Flavin and Yamashita, 2002; Sinai and Souleles, 2005; Case et al., 2005). 
2 This requires that individuals are “prudent”, or that the third derivative of the utility function is positive. 
3 We require marginal extraction costs to be positive and increasing in the amount extracted, but unlike previous 

work do not require them to be convex.  
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Norway has one of the largest and best managed commodity funds in the world.4 Its Government Pension 

Fund Global (GPFG) was established in 1990 to smooth expenditure financed from oil after a period of 

fiscal volatility in the 1970s and 1980s. The GPFG must allocate its assets across a diversified portfolio 

(60% equity tracking the FTSE All Cap Index, up to 40% bond of which 70% government bonds and 

30% corporate bonds, both tracking Barclays indices, and up to 5% real estate tracking the Investment 

Property Databank’s Global Property Benchmark) and release approximately 4% of the fund for the 

general budget each year. This approach is consistent with standard portfolio theory, but fails to take 

account of a large and volatile stock of wealth beneath the soil (the “elephant in the ground”) which 

matches the wealth in the GPFG.5 Management of the GPFG should benefit from taking account of the 

notorious volatility of commodity prices. It has been argued that the effect of not holding oil and gas 

sector assets in the GPFG would be negligible (Ministry of Finance, 2008), but the effect of leveraging up 

the weights of risky assets in the portfolio and hedging based on the correlation of oil was not considered. 

The issue is not mentioned at all in the current management mandate (NBIM, 2012). Instead, the GPFG is 

focused on diversifying financial assets above the ground. Our arguments suggest that this leaves the 

government and people of Norway highly exposed to the volatility of oil prices and reserves below the 

ground.  

The paper is laid out as follows. Section 2 revisits standard portfolio theory without any below-ground 

oil. Section 3 extends this by introducing a predetermined path for oil production, focusing on the cases 

where the oil price is completely spanned by the market (sections 3.1 and 3.2) and the case where it is not 

(section 3.3). Section 4 derives the optimal path for oil extraction and shows that it is speeded up on 

average if oil prices are positively correlated with financial markets. Finally, section 5 concludes. 

 

 

 

 

 

 

                                                           
4 At US$700 billion the GPFG is the largest single fund in existence. Evaluating governance, accountability and 

transparency, structure and behavior, GPFG ranked first on the basis of the first two criteria and second overall, 

behind Alaska’s US$45 billion permanent fund (Truman, 2008). It also receives the highest rating on the Linaburg-

Maduell Transparency Index (SWF Institute, 2013). It has often been referred to as a “model” for managing 

sovereign wealth fund assets (Chambers, et al., 2012; Larsen, 2005). 
5 Norway has over 5 billion barrels of proven oil and 73 trillion feet of proven natural gas reserves (EIA, 2012). At 

2012 prices these are worth US$ 590 billion and US$ 190 billion. Together they are similar in size to the GPFG. 
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2. Portfolio allocation without oil 

Following Merton (1990), suppose the policy maker chooses consumption C and assets weights wi, i = 

1,.., n, to maximize the expected present value of utility with discount rate  > 0, 

(1)   ( )

,
( , ) max ( ) ,

i

s t
t

tC w
J F t E U C s e ds


  

    

subject to the budget constraint 

(2) 
1 1

( ) ( ) ,
m m

i i i i i

i i

dF w r Fdt rF C dt w F dZ 
 

       

where the value function J(F, t) depends on the size of the sovereign wealth fund F and time t. The fund 

consists of m risky assets, i = 1,.., m, with drift i and volatility i  and one safe asset, i = m+1, with return 

r and volatility m+1 =0.6 We define the total number of risky and safe assets as n  m +1. The fund is a 

portfolio consisting of Ni shares of assets, i = 1,.., n, each with price Pi, so that 
1

.
n

i ii
F PN


 The share 

of each asset in the portfolio is defined as / ,i i iw PN F  so that 
1

.
n

ii
F w F


 The price of each risky 

asset follows a Geometric Brownian Motion with constant coefficients, 

(3) , 1,.., ,i i i i i idP Pdt PdZ i m     

where dZi is a Wiener process with dZi dZj = ij dt and ii = 1 for i = 1,.., m. The prices of the risky assets 

thus have covariance matrix  = [ij] with ij = ij i j. We abstract from mean reversion in asset prices. 

With complete markets the weight of the safe asset in the fund, 
1

1 ,
m

n ii
w w


  can be positive or 

negative corresponding to whether the weight of the risky portfolio in the fund is smaller or greater than 

one. This is known as taking a long position (wn > 0) or short position (wn < 0) in the safe asset. We call 

total holdings of risky assets the “portfolio”, 
1

(1 ) ,
m

n ii
w F w F


  and denote the share by 1 .nw w   

For simplicity, we suppose that preferences exhibit constant relative risk aversion, 1( ) / (1 ),U C C     

where   denotes the coefficient of relative risk aversion, 1 +   the coefficient of relative prudence 

(Kimball, 1990) and 1/  the coefficient of intertemporal substitution.7 These preferences are part of the 

                                                           
6 Our analysis is partial equilibrium so the fund is treated as total wealth. This implicitly supposes that the 

government runs a non-fund balanced budget, so that can be abstracted from taxes and non-fund income. 
7 One can use Epstein-Zin preferences to separate out risk aversion and intertemporal substitution (Epstein and Zin, 

1989) as has been done in similar continuous-time problems before (Attanasio and Weber, 1989; Wang et al., 2013). 
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class of hyperbolic absolute risk aversion preferences, which permit explicit analytical solutions to the 

asset allocation problem (Merton, 1971). Solving the Hamilton-Jacobi-Bellman equation we obtain the 

optimal size of the “portfolio” and the allocation of risky assets within this “portfolio” (Merton, 1990).  

Proposition 1: In the absence of oil, the share of each risky asset in the “portfolio” is 

(4) 
1

1
, ( ).

m

i i i ij j

j

w w v r
v

  


    

and the share of the sum of all risky assets in the total portfolio is  

(5) 
1 1

, ( ),
m m

ij j

i j

v
w v v r

  

    

where vij  [-1]ij. The share of safe assets in the total portfolio equals 1  w.  

The price per share of the optimal “portfolio”, denoted by P, follows the Geometric Brownian Motion 

(6) ,dP Pdt PdZ    

where 
1 1 1

,
m m m

i i i j iji i j
      

  
    and 

1

1
.

m

i i ii
dZ dZ 

 
   

Proof: See Merton (1990, chapter 5). 

This highlights the Tobin-Markowitz separation theorem, which states that the multi-asset problem can be 

converted into a two-asset problem with one risky asset (the “portfolio”) and one safe asset.  

First, the size of the risky “portfolio” is determined by (4) and is proportional to the overall risk-adjusted 

return of the portfolio v and the willingness to take risk (i.e., the inverse of the coefficient of relative risk 

aversion ). It is independent of total wealth. If there is only one risky asset, (4) reduces to the Sharpe 

ratio, 2
1 1( ) / ,w r   so that the “portfolio” is proportional to the excess return of the risky asset over 

the safe asset and inversely proportional to the coefficient of relative aversion and the variance of the 

return on the risky asset. With various risky assets the overall risk-adjusted return is lower if the risky 

assets are positively correlated with each other, so that there is less scope for fluctuations to offset each 

other and to hedge positions. 

Second, the allocation of risky assets in the “portfolio” is independent of the degree of risk aversion and 

depends on the excess returns and the covariance structure of asset returns in the usual way. The 

“portfolio” will be diversified, so that a particular asset will have a higher weight if it is less correlated 

with other assets (i.e., lower vij) as indicated by (5). 
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Since (6) indicates that the “portfolio” follows a Geometric Brownian Motion, we can show residual 

volatility is managed through precautionary saving and consumption is a constant proportion of the fund. 

Proposition 2: Without oil the rate of change of consumption is 

(7) 
 

2 2

1

1
(1 ) ,

2

tE dC
rdt w

C


 




    

the rate of consumption is 

(8) 

2

* * 1 1
, 1 ,

2

r
C r F r r

 

   

    
        

     

 

and the fund follows the Geometric Brownian Motion 

(9) * * *, ( ) ,dF Fdt wFdZ r w r r          

which implies that 

(10) 
* 2 21

( ) (0)exp ( ) , 0.
2

F t F w t wZ t t  
  

     
  

 

Proof: Based on Merton (1990, chapter 5). 

Aggregate risk is managed by precautionary saving (cf., Leland, 1968; Sandmo, 1970; Zeldes, 1986; 

Carroll and Kimball, 2008). This can be seen from the extra term on the right-hand side of the stochastic 

Euler equation (7), which indicates that the expected time path of consumption is tilted upwards. The 

degree of tilt increases with the coefficient of relative prudence 1 + , the riskiness of the “portfolio” 2, 

and the size of the risky portfolio, w. Precautionary saving will thus build up a buffer stock of assets by 

depressing consumption today. The buffer stock is not used to temporarily support consumption when 

asset prices are low, as asset price shocks are random walks and so are completely persistent. Instead, its 

sole function is to compensate future periods for bearing additional risk. 

Equation (8) shows that consumption is a constant proportion of fund wealth. The marginal propensity to 

consume is affected by a higher return on the safe asset in two ways: an intertemporal substitution effect 

(negative as future consumption has become cheaper) and an income effect (positive as lifetime wealth 

has gone up). The intertemporal substitution effect dominates the income effect if the elasticity of 

intertemporal substitution, 1/, exceeds one. It can be seen from (8) that the marginal propensity to 

consume, r*, then decreases with the return on the safe asset, r, and the average excess return on risky 
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assets,  - r; and increases with the coefficient of relative risk aversion, , and the volatility of the fund, 

.   

The degree of precautionary saving depends on aggregate risk, as individual risky assets will hedge one 

another in the “portfolio”. If there is perfect positive or negative correlation between the risky assets, the 

“portfolio” can be constructed so that all shocks offset each other and dZ = 0 and there is no need for 

precautionary saving. However, this would not be optimal as the government is willing to accept some 

risk for a higher return. The sovereign wealth fund consists of the safe assets and the risky portfolio, 

where the risk of the driven by the aggregate risk of the “portfolio”, dZ in (9). Consumption is a constant 

fraction of the fund so that, as the fund grows through capital gains, consumption grows in a way that is 

consistent with precautionary saving. This results from absolute risk aversion, /C, falling as consumption 

rises.  

Norway’s sovereign wealth fund in practice 

In practice the management of Norway’s Government Pension Fund Global (GPFG) is well-described by 

the three key elements of propositions 1 and 2 (see www.nbim.no), despite abstracting completely from 

oil. First, the Norwegian Ministry of Finance dictates the mix between equity assets and bonds. At present 

the mix is about 60% equity and 40% bonds, but prior to 2009 it was about 40% equity and 60% bonds. 

When the mandate was changed the Ministry of Finance did not alter the benchmark within the equity 

portfolio. Interpreting equity as “risky” and bonds as “safe” assets, this mandate is consistent with 

equation (4). Second, the optimal “portfolio” is designed by combining all assets in the market based on 

their risk, hedging potential and return properties. If all investors in the market have the same information 

about future asset prices, this can be interpreted as the “market portfolio” (Sharpe, 1964). This is 

consistent with Norway’s use of the FTSE All Cap Index as the benchmark for their equity investments, 

which is in accordance with equation (5). Third, under Norway’s budgetary rule or handlingsregelen the 

GPFG releases 4% of the accumulated assets into the general budget each year. This is consistent with 

equation (8). 

 

3. Portfolio allocation for a given path of oil extraction 

3.1. Complete markets: oil can be replicated by a bundle of one risky asset and the safe asset 

For an oil-rich economy total wealth consists of oil wealth and non-oil wealth. The stock of oil wealth 

cannot easily be traded, but it can be treated as tradable if its return can be replicated by a synthetic 

portfolio of traded assets. In that case, there are complete markets and one can offset oil or hedge oil in 

the fund. Let there be one single asset whose return is perfectly correlated with the oil price increment, so 

http://www.nbim.no/
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all hedging can be done with this single asset. Section 3.2 generalizes this to when oil price increments 

are perfectly spanned by all the other assets. Due to geological or engineering constraints oil production O 

is predetermined and constant for time t[0,T) and zero thereafter. Let PO be the price of oil and suppose 

that the country is a small oil exporter that cannot influence the oil price. The policy maker then solves: 

(1)   ( )

,
( , , ) max ( )

i

s t
O t

tC w
J F P t E U C s e ds


  

    

subject to the budget constraint 

(2) 
1 1

( ) ( )
m m

i i O i i i

i i

dF w r Fdt rF P O C dt w F dZ 
 

        

and the Geometric Brownian Process for asset prices (3) and the oil price 

(11) ,O O O O O OdP P dt P dZ    

where the drift in the oil price is not too large, O < r.8 Complete markets means that there exists a traded 

security, say asset k  [1,m], whose instantaneous return is perfectly correlated with oil income, so that 

dZO = dZk. The following proposition shows how oil can be replicated by a bundle of two assets. 

Proposition 3: If there is one financial asset k  [1, m] whose return is perfectly correlated with oil 

returns, oil revenue can be exactly replicated by a bundle of this asset and the safe asset n. The value of 

this bundle is then the capitalized value of oil revenue: 

(12)   
1

( , ) ( ) 1 exp ( ) , ( ), .O
O O k k O k k k

k k

V P t P t O T t r r


     
 

          

Total wealth consists of fund assets and subsoil oil assets, W = F + V, and behaves according to 

(13) 
1 1

( ) ( ) ,
m m

i i i i i

i i

dW wW r dt rW C dt wWdZ 
 

       

where i
i

w F
w for i k

F V
 


 and .k k

k

w F V
w

F V





 

Proof: See appendix A.1. 

This mimicking result only requires oil and asset k to be perfectly correlated, not to have the same 

variance, so that dZO = dZk  but O  k. The bundle is constructed by buying a number of shares in the 

risky and safe asset and the price of the bundle is the value of oil wealth. The number of risky shares k is 

                                                           
8 This is consistent with empirical estimates (e.g., van den Bremer and van der Ploeg, 2013). 
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chosen so that the bundle has the same variance as oil and the number of safe shares is chosen so that the 

bundle has the same drift as the price of oil. Since oil wealth and the bundle behave identically and 

markets are complete, the price of the replicating bundle is the value of oil wealth (12). Oil wealth 

corresponds to the present value of oil revenues using the discount rate k, which has been adjusted for 

the market price of risk as risk-averse investors require compensation for bearing risk.9 

Although oil production is predetermined, oil revenues can be treated as tradable because of the 

replicating bundle stated in proposition 3. We suppose that claims to oil cannot be packaged and sold off, 

because of political or practical constraints. If the claims to oil can be sold off, the proceeds could simply 

be invested in a diversified portfolio as described in section 2.10 However, this is not necessary if oil can 

be replicated. Any net exposure to oil price risk, dZO, can be artificially constructed by combining oil 

revenue with an amount of the replicating bundle. The problem can thus be simplified into choosing the 

net weight of each risky asset, iw for i = 1,.., m, in total wealth, W = F + V. This is analytically identical to 

the problem of section 2 and gives rise to the next proposition which shows that the net exposure to each 

asset has to be the same constant share of total wealth as in proposition 1.  

Proposition 4: If there is one financial asset k  [1, m] whose return is perfectly correlated with oil 

returns, the weight of each risky asset in total wealth will be constant: 

(14) 
1

, 1,.., , ,
m

i i i

i

w w i m w w w


     

where w and i are defined in proposition 1. The weight of each risky asset in the fund is given by 

(15) , , 1,.., ,i i

F V
w w i k i m

F


       and   .k k k

F V V
w w

F F



   

Proof: By direct analogy to proposition 1 and from the results of proposition 3. 

Equation (15) shows that oil wealth creates, in addition to the demands for risky assets in the absence of 

oil ( , 1,..,iw i m ), both a leverage demand for each risky asset ( ( / ) , 1.,.. )iV F w i m ) and a negative 

hedging demand ( ( / ) kV F  ) for the perfectly positively correlated (or replicating) risky asset. Note that 

these additional demands are proportional to the ratio of oil wealth to fund wealth. This means that the 

weight of every risky asset in the fund is leveraged by the ratio of total wealth to fund wealth, allowing 

                                                           
9 The value of an uncertain stream of income can also be found by discounting at the risk-free rate if the probability 

space is adjusted to a risk-neutral measure with the aid of a theorem due to Cameron, Martin and Girsanov (1960). 
10 There is little evidence of countries selling all oil rights upfront. An initial payment for a well is often made by 

extracting firms as part of an auction process. Since these firms are risk averse, they will not be willing to take on all 

price and production risk. 
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for the additional oil wealth outside the fund. Hedging demand is proportional to the beta relevant for oil 

and the replicating asset, / 0,k O k    and the leverage factor, V/F. Since asset k perfectly replicates 

oil, hedging demand is negative and oil risk can be fully offset by going short in this asset. 

Over time oil wealth’s effect on the fund will change as reserves are depleted. Initially there is a lot of 

exposure to oil price risk as a lot of oil remains in the crust of the earth. The weight of the safe asset, 

1 ( )n k

V
w w w

F
    , will therefore be relatively higher if negative hedging demand exceeds total 

demand for risky assets in the absence  of oil, k w  . As oil is depleted ( 0V  ) the leverage factor 

falls, the leverage demand for each risky asset falls back to their reference weight, ,i iw w i k  and

,k kw w  and the negative hedging demand for asset k tapers to zero. The weights of the fund should thus 

be continuously adjusted until oil has run out. In particular, as oil is extracted and the fund matures, assets 

should be reallocated from risky towards safe assets if k w  .11  

Figure 1 shows what happens with complete markets and a fund consisting of two risky assets A and B 

and a safe asset.12 In the “Spanned by A” case, the return on asset A is perfectly correlated with oil and 

that on asset B is independent of both asset A and oil. Initially, Asset B is leveraged and has a higher 

weight than without oil. This is also the case for asset A, but this extra demand is more than offset by 

negative hedging demand so that oil is offset by a short position in asset A. Over time oil wealth declines 

and leveraging fades out, so that the weight of asset B drops to its non-oil weight. That of asset A 

increases to its non-oil weight as both the negative hedging demand and the leverage demand taper off. 

The share held in the safe asset is initially higher to allow for the short position in asset A, but tapers off 

to the non-oil share as oil reserves are depleted. 

 

 

 

 

 

 

                                                           
11 This assumes that withdrawals from the fund are not so rapacious (i.e.,  is not too high, cf. (8)) that fund assets 

fall quicker than oil is extracted and V/F rises over time. 
12 The following illustrative figures assume that F(0)=100; r=ρ=0.05; θ = 0.5; Pi(0) = 1; αi = 0.07; σi = 0.02; ρij 

=0; O = 5; αO = 0.01 and σO = 0.25.  
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Figure 1: Portfolio weights with different correlations structures of risky assets with oil 

 

 

Norway is approaching the end of its oil reserves with a reserves-to-production ratio of 9.2 (BP, 2012). 

Our results suggest that Norway should have held a large offsetting position in oil securities (e.g., futures 

and forward contracts) and invested in other risky assets more aggressively. As oil is further depleted 

during the decades ahead, the portfolio shares should be adjusted towards a more even allocation. In 

contrast, Kuwait with a reserves-to-production ratio of nearly 100 can justify a much bigger proportion of 

risky assets in their fund. 
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The following proposition gives the effects of oil wealth on consumption. 

Proposition 5: If there is one financial asset whose return is perfectly correlated with oil returns, the rate 

of change of consumption is given by 

(16) 
 

2 2

1

1
(1 ) ,

2

t

W

E dC
rdt w

C


 




    

the rate of consumption is 

(17) 

2

* * 1 1 1
, 1 1 .

2

W
W W

W

r
C r W r r



    

    
          

    
 

where the drift and the volatility of total wealth, W and W correspond to  and  in proposition 1.  

Total wealth follows the Geometric Brownian Motion 

(18) * * *, ( ) ,W W W W W WdW Wdt wWdZ r w r r          

where aggregate volatility is 
1

i

W

m

W i i

i

dZ dZ







  . This implies that 

(19) 
* 2 21

( ) (0)exp ( ) , 0.
2

W W W WW t W w t wZ t t  
  

     
  

 

Proof: By direct analogy to proposition 2. 

Consumption is thus postponed to manage the residual volatility of all assets, 2 2
W w . Oil price shocks are 

fully hedged within the fund portfolio, so the government is only exposed to aggregate volatility, dZW. 

Consumption will be a constant proportion of total wealth. With no uncertainty (17) states that 

consumption is a constant proportion of total fund wealth and oil wealth. This echoes the Hartwick rule 

which states that any running down of below-ground oil wealth must be exactly compensated for by an 

equal buildup of above-ground financial assets so that total wealth is unaffected and consumption is fully 

smoothed (Hartwick, 1977). With uncertainty in (17) this hypothesis is adjusted for the risk and return on 

total wealth. With a proper construction of the fund consumption should not be directly affected by oil 

price shocks, only indirectly through their effect on total wealth. 
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Figure 2: Optimal time paths of oil, assets and consumption 

 

 

Figure 2 illustrates the paths of oil, assets and consumption. The drift in oil revenue is not too big, O < r, 

and oil revenue is more uncertain in the future (see panel (a)). The value of oil decreases with time as 

more reserves have been extracted (see panel (b)). The volatility of remaining oil wealth also declines 

after a point, because less remains exposed to volatile oil prices. Since oil price uncertainty is hedged 

within the portfolio, the policy maker is only exposed to aggregate volatility of total wealth. Consuming a 

constant proportion of total wealth and precautionary saving imply that total wealth and consumption 

steadily rise as oil wealth is extracted and converted into financial wealth (see panels (c) and (d)). 

3.2. Complete markets: oil can be replicated by a combination of all assets 

There may not be a single asset that is perfectly correlated with the oil price. However, complete markets 

still prevail if oil price increments can be perfectly spanned by all other financial assets. A way to capture 

this is to suppose that all risky assets are driven by a common set of underlying shocks (e.g., to demand, 

supply, technology or the weather), du  i.i.d. N(0, dt). Each asset may be affected by these underlying 

shocks differently, which gives rise to the correlations dZ =  du, where  = [ij] is an invertible matrix 

of m  m constants and dZ = [dZ1, .., dZm] is the vector of (possibly correlated) Wiener processes driving 
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the returns on the risky financial assets. Complete markets implies that oil can be spanned by all financial 

assets, so that the Wiener process driving oil prices can be written as: 

(20) 1 ,O O OdZ du dZ     

where O = [O1, .., Om] is a 1  m vector of constants determining how the oil price responds to the 

vector of underlying shocks, du.  

Proposition 6: If oil returns are perfectly spanned by all other financial assets, oil revenue can be 

replicated by a particular bundle of all risky financial assets in the market, i = 1, .., m, and the safe asset, 

n. The value of this bundle is the capitalized value of oil revenues:  

(12)   
1

1
( , , ) ( ) 1 exp ( ) , ( ), ,

m
i O

O O O i i i

ii

M
V P O t P t O T t r r


     

 

          

where M  [O -1]i. Total wealth consists of fund assets and subsoil oil assets, W = F + V, and evolves 

according to (13) with , 1,.., .i i
i

w F V
w i m

F V


 


  

Proof: See appendix A.1. 

Full hedging of oil wealth now requires a bundle of all assets. This is possible as the underlying shocks 

affecting the oil price will also affect all the risky financial assets in the market.13 The oil price can be 

replicated by linearly combining small exposures to many financial assets, as they are all driven by  

correlated and normally distributed processes. These exposures depend on the similarity of each financial 

asset to the oil price and its uniqueness, i. We call this the “replicating bundle”. To ensure that the net 

exposure to each financial asset is a constant share of total wealth as shown in (14), proposition 6 implies 

that their weight in the fund consists of an additional leverage and a hedging component:14 

(15) 

leverage demand
hedging demand

leveraged demand

, , 1,.., .i O
i i i i i

i

MV V
w w w i m

F F


 



 
      

 
 

Both the leverage and the hedging demands increase with the ratio of oil wealth to fund wealth. It is thus 

higher when there is a still a lot of oil in the ground. As oil is depleted with the passage of time, the 

leverage factor falls and thus the leveraged demand falls to its non-oil level and hedging demand 

vanishes. With one risky financial asset, m = 1, the total leveraged demand for risky assets can be written 

                                                           
13 One could also use a general equilibrium model to show how oil price fluctuations are driven by more 

fundamental shocks (e.g., Bodenstein et al., 2012). 
14 Merton (1990, chapter 21) refers to these components as a “wealth” effect and a “substitution” effect.  
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as 1

2
1

r F V

F





   
  

  
 and hedging demand as 1

1

,O O V

F

 


  where O1 is the correlation coefficient 

between oil and risky asset returns.15 We thus see that the total leveraged demand for the risky asset 

increases with the excess return and the oil leverage, but decreases with the riskiness of the risky asset 

and relative risk aversion. This leveraged demand is thus a leveraged version of the Sharpe ratio. 

The hedging demand for each asset also increases with the ratio of oil reserves to fund wealth. With one 

risky asset hedging demand is thus the product of the leverage and the oil-asset beta, where the latter 

corresponds to the slope coefficient of a regression of demeaned asset returns against demeaned oil 

returns. If oil price risk is purely idiosyncratic (O1 = 0), hedging demand is zero. Positive correlation of 

the financial asset and oil (O1 > 0) increases the volatility of total wealth, so that going short in the risky 

asset (i.e., negative hedging demand) helps to curb volatility of total wealth. Negative correlation of the 

asset (O1 < 0) and oil requires, in contrast, an even bigger allocation to the risky financial asset to hedge 

oil price risk (positive hedging demand). Equation (15) generalizes this analysis to multiple risky 

financial assets.  

If all financial asset returns are independent of each other (i.e., the matrix  is diagonal), one should 

hedge oil by investing more in assets that are negatively correlated with oil (e.g., assets that use oil as an 

input such as manufacturing and consumer goods industries) and less in assets that are substitutes for oil 

(e.g., renewable energy), especially when there is still a lot of oil in the ground and exposure to oil price 

risk is high. In that case, one should also leverage up all the demand for risky assets that would prevail in 

the absence of oil. 

Figure 1 also offers a simple illustration for the case of two risky assets imperfectly correlated with oil: 

asset A positively (OA = 0.5), asset B negatively (OB =  0.5), and returns on the two assets independent. 

We observe from comparing the two cases in figure 1 that oil wealth is now hedged by investing less in 

the asset that is positively correlated with oil, A, and more in the asset that is negatively correlated with 

oil, B. To make this possible, less of the safe asset must be held. The leverage effect increases the 

holdings of A and B relative to the case without oil. Over time the fund becomes a larger share of total 

wealth and the asset shares converge to what they would be without oil. 

More generally, hedging demand depends on the covariance of each financial asset with oil and with each 

other. For example, consider an underlying shock duG which affects oil and asset A but no others, i.e., 

OG, AG > 0 and iG = 0, for all i = 1,.., m. All other underlying shocks duj affect oil and asset A in 

opposite ways, so Oj > 0 and Aj < 0, for all j = 1,.., m. In this case, it is possible that oil and asset A are 

                                                           
15 A similar expression can be obtained by mean-variance analysis (Gintschel and Scherer, 2008; Scherer, 2009). 
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negatively correlated, 
1

0
m

Oj Ajj
 


 , but the fund should nevertheless invest less in asset A to offset the 

exposure to shock G. The allocation of all other assets will have to adjust to hedge the effects of the 

remaining shocks, duj for j  g. 

3.3. Incomplete markets 

To capture that there may be a part of oil returns that is not correlated in any way with the market we 

generalize the Wiener process driving oil returns to: 

(20) 1
0 0, [ ] 0, 1,.., ,O O O O idZ dZ du E du dZ i m       

where O0 is a scalar constant and duO is an independent Wiener process which is uncorrelated with the 

Wiener processes driving the returns on risky financial assets. The parameters O ,  and O,0 can be 

estimated by applying principal components analysis to the covariance matrix of the financial assets with 

oil. When a component of the oil price is unspanned by financial assets, there will be bigger need for 

precautionary saving to cope with residual volatility.16 

Proposition 7: With incomplete markets characterized by (20) the stochastic Euler equation can be 

approximated by 

 (21) 
  2

2 2 22
,0

1
1

(1 ) ,
2

t

O O

E dC
r Vdt

C
w

W


   



   
     

   

 

where   is defined in proposition 1 and w is defined in proposition 4. 

Proof: See appendix A.2. 

The first term on the right-hand size of (21) is the usual slope of the optimal consumption profile in 

deterministic settings. The second term on the right-hand side of (21) captures precautionary saving and is 

therefore proportional to the coefficient of relative prudence, CRP = 1 + .  The term 22w  inside the 

square brackets arises from the precautionary saving that is needed under complete markets where all oil 

price volatility can be fully diversified. It is proportional to the variance of the portfolio of risky financial 

assets and the share of risky assets in the fund squared. The other term inside the square brackets is 

2

2 2
,0O O

V

W
 

 
 
 

and arises from the precautionary saving that is required because not all oil price volatility 

                                                           
16 Earlier work abstracted from risky financial assets and focused at oil price volatility only (an extreme case of 

incomplete markets) to show that a fund is needed to smooth the benefits of oil extraction over different generations 

and to cushion against adverse oil price shocks (van den Bremer and van der Ploeg, 2013). Here we extend the 

analysis to allow for risky assets too, but still remaining within the realm of incomplete markets. 
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can be fully hedged. Less spanning of the oil price corresponds to a higher ,0O and thus implies that more 

precautionary saving is required, especially if the share of oil wealth to total wealth (V/W) and the 

volatility of the oil price are high. Hence, compared with the situation where oil prices and the fund are 

perfectly correlated and markets are complete, the consumption path becomes steeper and thus more 

precautionary saving is needed. This effect is larger the less the oil price is spanned by financial asset 

prices and the larger oil price volatility, but the effect evaporates as depletion leads to the share of oil 

wealth in total wealth fading away. 

Figure 3: The effect of non-diversifiable risk on portfolio shares 
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To illustrate this additional precautionary saving, we take the two-asset example of figure 1 with A 

perfectly correlated with the oil price and B not at all, and add non-diversifiable risk. The case of 

complete spanning (dark blue) corresponds to that in figure 1. Holdings of both financial assets are 

leveraged up, especially when oil wealth is highest. In addition, there is hedging demand for the perfectly 

correlated asset A to offset oil price volatility. In the beginning the holdings of asset A are negative, 

implying a short position (borrowing) in the asset, to invest in the risk-free asset. Over time the holdings 

of both risky assets, A and B, are unwound into the shares that prevail in the absence of oil. Effectively, 

holdings of financial assets are deleveraged as oil reserves are depleted. Consumption rises over time as 

wealth rises. This is a consequence of using precautionary savings to manage the residual volatility of 

total wealth.  

The case of no spanning at all (the dotted lines) assumes that the oil price is uncorrelated with both risky 

assets. This results in a leveraged demand for both assets without any offsetting hedging demand. All oil 

price volatility will be unhedged, and so must be managed by a large degree of precautionary saving. The 

case of partial spanning is like the example given in figure 1 but with residual oil price volatility added. 

This combines the cases of complete and zero spanning, leading more precautionary saving and a steeper 

consumption path. 

Figure 4: The effect of non-diversifiable risk on consumption  

 

0 5 10 15 20
7

7.5

8

8.5

9

9.5

10

10.5

11

C

t

Consumption

 

 

Complete Span Partial Span No Span



 
 

20 
 

4. Portfolio allocation with endogenous oil extraction 

We now turn our attention to how financial assets should affect oil extraction. The workhorse of resource 

economics is the Hotelling rule, which states that the return on keeping oil in situ (the expected capital 

gains) must equal the return of extracting oil, selling it and getting a return on it (the return on the safe 

asset) (Hotelling, 1931). This rule then dictates the optimal speed of extracting oil from the earth. We now 

illustrate how this canonical rule has to be modified in the presence of both volatile oil and financial asset 

prices. To tackle this question we assume that markets are complete so that there exists a traded asset k 

which is perfectly correlated with oil, dZk = dZO (as in section 3.1). We will find that oil wealth has to be 

hedged by continuously reallocating the fund, so that the net exposure to oil remains a constant share of 

total wealth. Consumption should not directly be affected by the path of oil extraction, only by the way 

oil extraction changes the present value of oil wealth. If marginal oil rents are positively correlated with 

other assets, we find that the rate of extraction will be faster on average than predicted by the standard 

Hotelling rule. This generates a higher rate of return on the subsoil assets, which provides compensation 

for the risk of holding oil beneath the ground. Furthermore, when the oil price jumps extraction should 

also rise, to make the most of higher prices.17 

4.1. Optimal rates of oil extraction 

The policy maker chooses consumption C, the rate of oil extraction O, and asset weights wi, i =1, .., m to 

maximize expected welfare 

(1)   ( )

, ,
( , , , ) max ( )

i

s t
O t

sC w O
J F P S t E U C s e ds


  

    

subject to the budget constraint 

(2)  
1 1

( ) ( , ) ,
m m

i i O i i i

i i

dF w r Fdt rF P O C dt w F dZ 
 

        

the Geometric Brownian Processes for asset prices (3) and the oil price (11) and the depletion equation 

(22) ,dS Odt   

where oil rents are revenues less extraction costs, ( , ) ( ),O OP O P O G O    and total extraction costs are 

increasing in the extraction rate (G > 0) and convex (G > 0) (cf., Pindyck, 1984). Cumulative oil 

extraction cannot exceed given initial oil reserves, 
0

0
( ) .O t dt S



  In practice, oil fields evolve 

                                                           
17 Following the literature we assume that oil extraction can be adjusted instantaneously. In practice oil extraction is 

less flexible than asset portfolios, though we abstract from this distinction. 
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stochastically as new fields are discovered and existing fields becomes more or less economical (e.g., 

Pindyck, 1978). They are also endogenous to exploration effort, but we abstract from these complications 

here. 

Proposition 8: The optimal path for the expected rate of oil extraction satisfies 

(23)  
 

1
1

.
( , , , )

F O

O O

F O

E dJ d
dtE d r

dt J F P S t



     

Under the assumption of quadratic extraction costs, 2( ) / 2, 0,G O O   the path for the actual rate of 

oil extraction ( , , , )OO O F P S t satisfies 

(24)    
1

( ) (1 ) ( ) .
m

O
O O F i i i i P k k O O

ki

d r dt O r dt dZ w F O r dt dZ P


     




           

Using the partials 
FO  and 

PO  from the deterministic solution, and assuming 0O  , the stochastic path 

for oil extraction is: 

(25)     1 1 1
2 2

( ) ( ) .O O

k k
k k O OOdO r r P r r O dt dZO

 

  
          

Proof: See appendix A.3.  

The first term on the right-hand side of (23) corresponds to the standard Hotelling rule. This states that the 

expected rate of change of marginal oil rents must equal the return on safe assets. In the absence of 

stochastic shocks this is the rule that prevails. Provided O < r the rate of oil extraction will decline over 

time. The second term on the right-hand side of (23) is negative if marginal oil rents are positively 

correlated with the value of the financial assets in the fund. In this case higher marginal oil rent is 

associated with a higher fund value, F, and thus with a lower marginal utility from an extra dollar in the 

fund, FJ  (i.e.,  1
Odt FE dJ d < 0). Equation (23) implies that, if oil is pro-cyclical, the rate of oil 

extraction is faster than predicted by the deterministic Hotelling rule (as  1
Odt OE d r   ). 

The second term on the right-hand side of (23) gives the stochastic Hotelling rule. This states that the 

expected rate of change of marginal oil rents must be higher than the return on safe assets, if oil and the 

market are positively correlated. The reason is to generate a higher rate of return on oil – a “risk 

premium” - which provides compensation for the risk of holding it beneath the ground. This will involve 

initially extracting oil more quickly than in a standard Hotelling rule, before rapidly reducing the rate of 

extraction, as seen in figure 5. Reducing the rate of extraction reduces the burden of non-linear extraction 
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costs, which boosts the rate of return ( ( )OP O G O   , where '( ) 0, ''( ) 0G O G O  ). The size of the 

risk premium on oil depends on its correlation with the rest of the fund. If they are perfectly uncorrelated (

 1
Odt FE dJ d = 0) then all oil price risk can be diversified, and no risk premium is needed. The more 

correlated they are, the less oil price shocks can be diversified and the more risk premium needed.  

Equation (25) indicates that the rate of oil extraction is positively correlated with the oil price. A sudden 

jump in the oil price requires a jump in the rate of extraction to make the most of it. The reason is that 

increasing the rate of extraction increases marginal extraction cost (as G > 0), which limits the jump in 

marginal rents (O(PO, O) = PO  G(O)). Clearly, oil price shocks affect the rate of extraction most when 

reserves (and in turn O) are highest, as this is when the majority of oil remains exposed to volatile prices. 

As the date of exhaustion approaches, the rate of oil extraction gets closer to what it would be in the 

absence of volatile oil and asset prices. 

Our finding that stochastic oil prices increase the rate of extraction are consistent with earlier studies, but 

uses a different mechanism. Earlier work ignored financial assets and relied on “extractive prudence” 

which is driven by sufficiently convex marginal extraction costs, '''(O) 0G   (Pindyck, 1981; van der 

Ploeg, 2010).18 This means it is better to extract oil quickly because once it is above ground and sold it is 

no longer exposed to risk. Proposition 8 abstracts from this type of prudence, since it considers the case of 

quadratic extraction costs (i.e., '''(O) 0G  ). However, in our framework oil rents are still exposed to 

risk above the ground because they must be invested. Therefore, oil should be treated as just another part 

of the national portfolio. The effect of risk on extraction is driven by “extractive risk aversion” ( ''( )G O ), 

rather than extractive prudence ( '''( )G O ). 

  

                                                           
18 Normally, prudence relies on the convexity of marginal utility, U > 0 (Kimball, 1990). 
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Figure 5: Oil extraction paths when asset A perfectly correlated with oil and asset B not all 
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In practice, fluctuations in the oil price make reserves more or less economic. An example is the 

Athabasca oil sand reserves in Alberta, Canada. These reserves have been known since at least the 18th 

century. Production began very slowly in 1967 with 30,000 barrels per day. The rapid rise in oil prices 

since 2003 has made these reserves economically viable, and production increased to over 1.7 million 

barrels per day in 2011. During this period both oil prices and asset returns fell dramatically as a result of 

the financial crisis of 2008-2009, as did production (Alberta Energy Regulator, 2013). Proposition 8 

suggests that the Albertan government should hasten oil production by more than a simple forecast of oil 

prices would suggest. The reason is Alberta’s Heritage Savings Trust Fund. Extracting a lot initially 

would allow the rate of extraction to fall rapidly. The savings that Alberta would make on extraction costs 

would provide an additional return as compensation for the oil price risk it has to bear. 

4.2. Optimal portfolio allocation and consumption with endogenous rates of oil extraction 

Finally, we will show that with complete markets oil rents can be fully hedged by the fund, regardless of 

the oil extraction path. This involves continuously adjusting the asset allocation so that the net exposure 

to risk at any point of time remains a constant share of total wealth. The oil extraction path should not 

affect consumption directly, only through its effect on the expected present value of oil rents.  

Proposition 9: With complete markets, continuous trading and the rate of oil extraction given by 

equation (25), oil wealth can be replicated with a bundle of value X(t), comprising the perfectly 

correlated asset k and the safe asset n, and evolves according to 

(26)  ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( ),k k k k kdX t t dt rX t r O t X t dt O t X t dZ t         

where ( , ) /k k kO t N P X  is the continuously adjusted share of asset k in the replicating bundle. 

Total fund and oil wealth evolves according to 

(27) 
1 1

( ) ( ) ,
m m

i i i i i

i i

dW r wW rW C dt wWdZ 
 

       

where  

(28) 
( ) ( ) ( )

( ) , , ( ) ( ) ( , ) .
( ) ( ) ( ) ( ) ( ) ( )

i i k k k

F t F t V t
w t w i k w t w t O t

F t V t F t V t F t V t


     
        

       
 

Proof: See appendix A.4. 

Oil rents no longer follow a Geometric Brownian Motion (as in section 3), but are driven by the drift 

( , , ) ,OP S t dt and the volatility, ( , , )O OP S t dZ  which depend on the states, PO and S, and the optimally 

chosen rate of oil extraction which depends on those states too:  
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(29) ( , , ) ( , , ) .O O Od P S t dt P S t dZ      

The drift and volatility of oil rents can be replicated by continuously changing the composition of the 

bundle of the perfectly correlated asset and the safe asset. The challenge is to continuously adjust the 

amount of k in the bundle so that the instantaneous change in the value of oil rents, ( , , )O OP S t dZ , is 

matched perfectly by the instantaneous change in the bundle, ( , ) ( )k k kO t X t dZ  . The portfolio holding 

of the safe asset is then chosen so that the instantaneous drifts also match. 

As before the fund should be managed to ensure that the net exposure to each financial asset is a constant 

share of total wealth: , 1,..,i i iw w i m   from proposition 4. Any exposure to asset k that is embodied in 

oil, ( , )k O t , can be offset by the asset’s weight in the fund, w, so as to ensure that the net weight in total 

wealth is constant as indicated by (28). By rearranging (27) the holdings of each financial asset in the 

fund can, as before, be split up into a leveraged component and an additional hedging component for the 

perfectly correlated asset k: 

(30) 

leveraged demand speculative demand

, , ( , ) .i i k k k

F V F V V
w w i k w w O t

F F F


       
          

      
 

Combining proposition 5 and (27) we obtain (17), so that consumption is a constant fraction of total 

wealth. The rate of oil extraction does not affect consumption directly, but only through its effect on total 

wealth. Oil extraction and consumption are thus separated due to judicious management of the fund: on 

the one hand, the fund allows consumption to be smoothed in line with the permanent income hypothesis, 

and, on the other hand, the fund buffers consumption from oil price volatility by hedging it with traded 

financial assets. Only the residual volatility of total wealth (the part of oil wealth that cannot be 

diversified away) needs to be managed by additional precautionary saving. 

 

5. Concluding remarks 

Commodity exporters have two major types of national assets: natural resources below the ground and a 

sovereign wealth fund above it. Although some attempts to hedge commodity price volatility have been 

made, from long-term forward agreements in iron ore until 2010 to the purchase of oil options by Mexico 

in 2008, there is no evidence of systematic coordination of below-ground and above-ground assets. We 

have therefore made a case for coordinating the management of these two types of asset by integrating the 

theories of portfolio allocation, precautionary saving, and optimal oil extraction under oil- and asset-price 

volatility. Our main findings are as follows. First, the fund should leverage its holdings of risky assets by 
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a factor that is equal to the ratio of total of oil and fund wealth to fund wealth by going short and reducing 

its holdings of the safe asset. As natural resource reserves run out, this leveraging has to unwind. The 

fund thus becomes less risky as it matures. Second, oil price fluctuations have to be hedged by investing 

roughly relatively more in assets whose returns are negatively correlated with oil price fluctuations and 

vice versa, though the actual allocation should be determined by principal component analysis of the full 

covariance structures of all the shocks. These hedging demands are proportional to the ratio of natural 

resource wealth to fund wealth. Third, the rate of natural resource extraction is faster if oil prices are 

volatile and positively correlated with financial markets, generating a higher rate of return on subsoil oil 

to compensate for the risk it is exposed to. Fourth, consumption should be a constant share of the total of 

natural resource wealth and fund wealth. This means that the bird in hand rule used by Norway and other 

countries has to be modified to include total wealth, so that the fund helps to insulate consumption from 

oil extraction. Finally, precautionary saving should be used to manage the risk associated with the 

residual non-diversifiable volatility of oil prices. 

Our analysis offers a first step towards an integrated approach to managing sovereign wealth funds and 

natural resources under uncertainty. Future work should allow for the uncertainty and costs associated 

with discoveries and exploration of new reserves by extending Pindyck (1978) to a setting with financial 

assets. This would help to understand how leveraging financial assets and hedging oil wealth in a 

sovereign wealth fund would affect exploration effort. It is also important to allow for the effect of oil 

price volatility on investment in domestic, non-traded capital and the growth and development of the 

economy. This involves extending the analysis of Gaudet and Khadr (1991) and Atewemba and Gaudet 

(2012) to allow for financial assets, and would ideally allow for capital scarcity too. In countries that have 

less access to international capital markets the optimal structure of domestic production may be reformed 

to be less vulnerable to commodity price volatility. A better modeling of the volatility of asset and oil 

prices may make our recommendations more compelling. Although lognormal distributions for 

commodity and asset prices lead to closed-form solutions, in practice prices exhibit mean reversion, large 

jumps and time-varying correlation. Finally, there may be limits on how much a country is able to hedge 

even if the risk is spread across many assets, national governments may be averse to taking large short 

positions to allow leveraged holdings of risky assets by borrowing, and large precautionary buffers may 

be raided by political rivals in a partisan political framework. A better understanding of such constraints 

would lead to recommendations that are politically viable. 
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Appendix 

A.1 Complete markets and exogenous extraction (proof of Propositions 3 and 6): 

Our proof extends the analysis of university endowments by Merton (1990, chapter 21) to both complete 

and incomplete markets. We first justify (20). Let the oil price be instantaneously imperfectly correlated 

with the return on each asset, , 1, 1,.., .O i Oi OidZ dZ dt i m      The returns on these m + 1 prices can 

be expressed as a linear combination of m + 1 independent Wiener processes, 

(0, ), 1,.., 1:jdu N dt j m    

(A1) 

0 01 0

1 1 11 1 1

.

1

.
.

O O m O

O m

mO m mm mm

dZ du

dZ du

dudZ

  

  

  

    
    
    
    
         

 

Rearranging allows the instantaneous return on oil to be separated from the other assets: 

(A1) 

0 01 0

1 11 1 1

.

1

0
.

.

0

O O m O

m

m mm mm

dZ du

dZ du

dudZ

  

 

 

    
    
    
    
         

 

(A2) 0 , ,O O O OdZ du du dZ du      

where 01 0 1[ ,.., ], , [ ,.., ]'O m ij mdu du du         and 1[ ,.., ]'.mdZ dZ dZ Equation (20) follows from 

(A2) if the matrix  is invertible. The parameters O,  and 0O can be estimated using principle 

components analysis. The instantaneous covariance between two Wiener processes can be expressed as 

1
cov( , ) var( ).

m

i j ig jg gg
dZ dZ du 


  The covariance matrix for dZ is   1/2 1/2 1/2 1/2 ',V A V AE E dt E E dt 

where EV is the matrix of eigenvectors, 
1/2 1/2[ ]A ij iE e is the diagonal matrix of the square roots of 

eigenvalues, ei, and 
1/2.V AE E  If markets are complete then 0 0O   and the spanned oil price can be 

expressed as follows: 

(A3) 
1

( )
( ) (0)exp( ) ,

(0)

im
i

O O
i

i

P t
P t P t

P






 
    

 
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where 1/ ,i O i i i O
i

M M        
and 

2
0

1 1 1

1 1

2 2

m m m

i i i i j ij

i i j

       
  

 
     

 
  (from applying 

Ito’s lemma and comparing coefficients with equation (11)). An estimate of the covariance matrix can 

thus be found after estimating the parameters i, i = 1, .., m and O by maximum likelihood. 

Lemma A1: If markets are complete, the capitalized value of oil income (“oil wealth”) is 

(A4)   
1

( , ) ( ) 1 exp ( ) / , ( ).
m

O O O i ii
V P t P t O T t r r     


         

Proof: First, we construct a portfolio that is identical to the capitalized value of oil. Second, we construct 

another portfolio consisting of the risky and safe financial assets and oil wealth. Third, we show that the 

posited expression for oil wealth satisfies an arbitrage condition that has to hold. 

First, we construct a portfolio with value V (P1, .., Pm, t) which consists of assets 1, .., n and distributes an 

amount of cash equal to PO(t)O per unit time. This value evolves according to 

(A5) ( ) .V O O OdV V P O dt VdZ     

With the aid of Ito’s lemma the dynamics of the portfolio can be written as 

(A6)   
1 1 1 1 1 1 1

1 1
,

2 2

m m m m m m m

i i t ij i j i i i t ij i j ij i j i i i i

i i j i i j i

dV V P V dt V dPdP V P V V PP dt PV dZ    
      

 
       

  
      

where subscripts of V (P1, .., Pm, t) denote partial derivatives and .ij i j ij    Comparing coefficients 

with (A5) gives 

(A7a) 
1 1 1

1
,

2

m m m

V O i i i i j ij ij i j

i i j

V P O PV V PP    
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     

(A7b) 
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.
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V V i i i i
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VdZ PV dZ 
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Finally, let .V VdZ du  This implies 

(A8)  1 1 1' , / ,.., / .V V V V m m mdZ du du V P V V P V          

Second, we create another portfolio with value X(t) that consists of oil wealth V(t), the risky assets and the 

safe asset. This portfolio is dynamically constructed, so that short positions offset the long positions, there 

is no net risk, and the net value of the asset is always equal to zero. Hence, the weight of the safe asset in 
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total wealth is 
1

,
m

r V ii
w w w


   where Vw is the weight of oil wealth in total wealth. The return to this 

portfolio is 

(A9) 
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where the second equality follows from (A5), the third equality from (A8) and 1 1[ ,.., ]'.m mw w    

Suppose that the weights in this new portfolio are dynamically constructed so that there is no risk: 

' 0Vw du du     and the last two terms in the last equality of (A9) vanish. The weights that would 

achieve this are ( / ) , 1,.., .i i i Vw V V Pw i m    Arbitrage dictates that such a constructed portfolio must 

have a zero expected excess return over the risk-free rate:  

(A10) 
1 1

( ) ( ) 0, ( ) ( ).
m m

V V i i v i i i

i i

w r w r V r V P r   
 

         

Combining (A10) with (A7a) gives the following optimality condition for the portfolio: 

(A11) 
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1
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Third, we note that the proposed capitalized value of oil income and associated partials,  

(A12) 
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indeed satisfies (A11). Lemma A1 gives the capitalized value of oil income. The instantaneous rate of 

change of this value is found by applying Ito’s lemma to (A4): 

(A13) 
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( ) ( ) .
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O i i O O

i

P t Odt dV r r Vdt VdZ  
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The results in the second part of propositions 3 and 6 follow from substituting (A13) and the evolution of 

fund assets given by (2) into the expression for total wealth, dW = dF + dV: 

(A14) 
1 1

( )( ) ( ) .
m m

i i i i i i O O

i i

dW r w F V rW C dt w F dZ VdZ   
 

         

A.2 Incomplete markets and exogenous extraction (proof of proposition 7): 

Now let markets be incomplete, so that the shocks underlying the oil price are not spanned by other assets 

in the market, 

(A15)  
 

,0

1
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OO O

m
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



    
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with dZO  the 1x1 Wiener process driving the oil price (both the spanned and the unspanned part), dZ  the 

mx1 vector of Wiener processes describing the individual above-ground assets, duO the 1x1 Wiener 

processes that drives oil price fluctuations that cannot be spanned by the market and du  the mx1 vector 

of fundamental Wiener processes underlying the market. The elements of the vectors duO  and du  are 

Wiener processes with zero correlation.  The vector of zeros  
1

0
m

 ensures that the shocks to the above-

ground assets dZ  are not affected by shocks in the fundamental oil price process duO . The scalar lO,0
 

determines the share of the oil price that is spanned. Since duO  and dZO  both have a variance of unity 

(cf. Wiener processes), we must have: 

(A16)   
22
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1,O

m

O i
i




    

Total oil price volatility is thus unaffected by the degree of spanning. From (A15) we have 

(A17)  ,

1

0 ,0O O O O OO OdZ du dZ du du du dZ          . 

The oil price in (A3) can be rewritten as, 
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where  

(A18)    1

0 ,0  for . ,O O O
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and ( )hP t  is the unspanned component of oil prices, which we assume also follows the process, 

(A19)  .h h h h h OdP P dt P du    

Let the value function be    , , ,t

t

J F V t E U C e d 

 
  

 
  where F is above-ground wealth and V is 

below-ground wealth. Above-ground wealth is accumulated according to 

(A20)     
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Following the derivation of (A13) we get the evolution of below ground wealth: 
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It can be shown by differentiating using Ito’s lemma that (A13) has the following solution:  
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where 
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The Hamilton-Jacobi-Bellman equation is 

(A23)     
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where we have: 

(A24) 
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 The first-order conditions with respect to C and wi  are: 
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(A25)     0 ,t t
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Equation (A26) can be solved to give the optimal weights in the fund: 

(A27)  
1

m

i i
F FV

FF FF

j j i

j

J J V
w

FJ
r

J F
  



    or  
1

,
m

i ij j i

j

C F C V V
w

C F C F
r

F
  



 
 
   

  

To proceed analytically we can approximate the partial derivatives with those from the complete markets 

case in (17), 
*

W

C C C
r

F V W

  
  

  
 (or alternatively we assume that consumption is a linear function of 

the sum of above- and below-ground wealth), to obtain: 
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Alternatively, ii i

W V
w w

F F
  , where iw  is the weight of each asset in total wealth, defined as in 

proposition 1 by ,iiw w for all the assets i that span oil. The Euler equation can be written using the 

same approximation as 
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Note that we have: 
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Combining these expressions we get: 
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 (A34)  
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where the weight and volatility of risky assets in total wealth, w2 and 2, are defined as in proposition 1. 

Hence, the stochastic Euler equation can approximately be written as equation (21) in proposition 7. 

A.3 Complete markets and endogenous extraction (proof of proposition 8): 

The Hamilton-Jacobi-Bellman equation for the problem (1), (2) and (22) is: 
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The first-order conditions are: 
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Upon differentiation of (A35) with respect to the state variables, we get: 
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Upon substitution of (A36b) into (A37a), we get 
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(A38)   
1

.F FE dJ rJ
dt

   

Equation (A37b) states that oil is extracted so that the marginal utility of an extra barrel of oil in the 

ground is always constant. Equation (A38) requires that the marginal utility of assets (or of consumption 

from (A36a)) must fall at the rate of interest. Combining (A36a) and (A38) gives the Euler equation 
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Applying Ito’s lemma to (A36c) gives rise to 
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Combining (A37b), (A38) and (A40) yields the expected Hotelling rule (23) of proposition 8. The 

extraction path is thus affected by the marginal utility of wealth and marginal oil rents. Marginal oil rents 

are a function of the oil price and marginal extraction cost. Both the marginal utility of wealth and the rate 

of oil extraction will be a function of the four state variables, ( , , , )F OJ F P S t and ( , , , ).OO F P S t

Application of Ito’s lemma to both yields: 
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where we have used (A38) and  
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( , , , )O OF P S t E dO
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  is the yet to be determined expected rate of oil 

extraction. Applying Ito’s lemma to '( )O O OP G O P O     gives 
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where we have used '''(O) 0G   for quadratic extraction costs. Multiplying (A41) and (A43) gives 
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(A44)  
1 1

1

(1 )
.

m m
F O F

i i FP O O iO FF j j ij

F O F O i j

m
P O O

FP O O FF i i iO

F O i

dJ d O F
w J P J F w dt

J J

O P
J P J F w dt

J


    

 
  

 



    
    

      

 
  

  

 



 

This can be simplified by substituting in the optimal asset weight condition in (A36b) for all assets (the 

OF term) and for the perfectly correlated asset k ( 1kO  , the OP term) to give 
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Substituting (A43) and (A45) into (23) gives the stochastic Hotelling rule in (24). To gain further intuition 

we approximate the partial derivatives in (24) with their deterministic counterparts. 

Lemma A2: If all prices are deterministic then, O Or   . If the oil price is also without drift, 0O  , 

then the date of exhaustion is, 1 ln( (0) / (0))Or
O PT   , and the optimal rate of extraction (to a leading 

order approximation) is, 

(A46) 2 ( ) () )( r
OS tO P tt    

 

Proof: The deterministic Hotelling rule comes from setting [ ] 0t F OdJ dE    in equation (23), giving, 

O Or   . Using O OP O    this corresponds to, 1 ( ) (0) Ot

O OO rO r P e
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     , which has the 

solution, 

(A47)  1( ) (0) (0) Otrt rt

OO t O e eP e


    

 

We can never have O r   as price growth would delay extraction indefinitely. Provided initial marginal 

oil rents are positive, (0) 0O  , and, 
O r  , then the extraction rate remains finite. The optimal initial 

extraction rate must satisfy, ( ( ))
T

t
S t O d   , and the date of exhaustion T must satisfy, (T) 0O  . The 

date of exhaustion only has an explicit solution for 0O  , which we assume with some empirical 

confidence.  This gives 
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where (0) /0 (0) 1OO PR    . As (A49) only implicitly defines the rate of extraction, ( ), OO f S P , 

we use asymptotic methods to find a series solution and study the leading order effect. Using 

1

1
ln(1 ) n

nn
R R
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
    we have, 
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This can be inverted to give, 

 

(A51) 32 1
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1 2 42 1
3 9 5402 2

( ) ( ) ( ) ( )( ) ( ) 2 ( ( ) )[ ]O t S t t t tt ot           

 

where ( ) ( ) / ( )Ot r t tS P  , and the coefficients stem from the series inversion so are independent of 

parameters. The approximation error is quantified by comparison with the numerically exact solution in 

figure A1. The numerical simulations are calculated using the series solution up to the third order to avoid 

unnecessary approximation. To the leading order this yields the relationship in (A46).  

 

Figure A1: Approximation error for deterministic O(t) at various degrees of accuracy 
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From lemma A2 we have the following approximations for the partial derivatives required to solve the 

stochastic Hotelling equation, 

(A52) 
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An approximation of the stochastic Hotelling rule comes from substituting these partials into (24) to give, 
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So, a positive shock to the oil price, 
OdZ , increases marginal oil rents. The expected path of oil extraction 

comes from combining equations (A43) and (A53), and setting 0O   as in Lemma A2, to give 

(A54) 
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The approximate stochastic path of oil extraction in (25) is found by substituting (A54) into (A42). 

 

A.4 Complete markets and endogenous extraction (proof of proposition 9): 

Let there be a traded asset k, which is perfectly correlated with oil, dZO = dZk. The first part of the 

proposition states that oil rents can be replicated with a bundle containing Nk shares of asset k and Nr 

shares of the safe asset, X  Nk Pk + Nr Pr. This bundle must yield a continuous dividend exactly equal to 

the optimal oil rents . This replicating bundle can be constructed as follows. 

We begin in discrete time with sample period h before moving to continuous time by h  0 following 

Merton (1990, p. 125). Construct a bundle so that at every time t the number of shares Nk(t) and Nr(t) are 

chosen and held until time t + h. At the same time a dividend is declared exactly equal to (t), which is 

paid continuously throughout the period h. The bundle will start period t with Nk(th) Pk(t) + Nr(th) Pr(t) 

as the number of shares in each asset has been chosen in the previous period. At time t the dividend and 

new shares are chosen to preserve the value of the bundle,  
,

( ) ( ) ( ) ( ).i i i

i k r

t h N t N t h P t
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     The 

same must be true at t + h, so that 

(A50)  
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Taking the limit as h  0 we get 
,

i i i i

i k r

dt dN dP dN P


   assuming all variables are continuous. This 

describes the rate at which shares have to be sold to finance the dividend. 

Equation (26) of proposition 9 combines this expression for the dividends with the path for the replicating 

bundle. By Ito’s lemma the replicating bundle must satisfy 

(A51)  
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where ( ) ( ) / ( )k k kN t P t X t  is the weight of the risky asset k in the replicating bundle. The weights k(t) 

must be updated continuously to match the stochastic path of oil rents described by (A50). We have 

focused on an expression for dV(t) + (t)dt. The explicit expression for V(t) can be found using 

contingent claims analysis (Merton, 1990). This is also applicable when oil rents follow the general Ito 

process ( ) (.) (.) Od t a dt s dZ     when a(.) and s(.) are not constants. The value of oil rents must equal 

that of the replicating bundle, V(t) = X(t), because both share exactly the same properties (made possible 

by the perfect correlation between asset k and oil). Equation (26) of proposition 9 states that the policy 

maker’s problem can be summarized in terms of total wealth. Total wealth is given by W(t) = F(t) + V(t). 

Combining equations (2) and (A51) gives equation (27) in proposition 9 


